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Abstract
We derive the mathematical formalism for the ensemble averages of the non-
Bragg scattering differential cross sections for crystals of statistically uniformly
randomly distributed substitution disorder. In addition, we study the intensity
fluctuations from their ensemble averages. The fluctuations are shown to be
extremely large and identical to the averaged intensities themselves. However,
we demonstrate mathematically that when spectrometer resolutions are not
sharp enough, which is typical, the fluctuations are suppressed greatly by the
resolutions and are proportional to the square root of the total number of
scattering molecules. Computer Monte Carlo simulations are carried out to
study the non-Bragg scattering intensity fluctuations, and the simulation results
are consistent with our theoretical predictions. Furthermore, we obtain the noise
levels in determining the electron density distribution from both the non-Bragg
and Bragg scattering. A sharpened Patterson map is proposed to be used to
solve the overlap of the non-Bragg scattering for the case that a unit cell contains
multiple molecules which are of different angular orientations.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

It is of deep interest to many scientists to know the instantaneous structure of a molecule when
it is in a transient state due to reasons such as temperature changes, photo excitations, chemical
reactions, and biological processes. In the scope of using crystallographic techniques, the
interest is focused on those molecules which can be photo excited. Traditionally, the electron
density profile for a transient molecule is obtained through the difference Fourier map [1, 2],
from the often prominent x-ray Bragg peak intensities. The difference Fourier map method is an
approximation, and the systematic error created by using it [3] may subsequently be corrected
by model building refinement [4]. However, if the systematic error is large, it can be imagined
that the model building process can be difficult. It is important to supply an accurate electron
density profile before any model refinement. Do we have other means to provide the electron
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density profile which may have a smaller systematic error? It is known that, for an excited
crystal, in addition to the Bragg peaks, there exists diffuse scattering which we denote as non-
Bragg scattering [5]. Therefore, it is natural to ask the question of whether the non-Bragg
scattering can be used to solve the structure of the excited molecules, and if the answer is yes,
at what level of signal-to-noise ratio (SNR). In this paper, we shall address these questions.

For a photo excited crystal, the non-Bragg scattering arises from the substitution disorder
developed by the excitation. An example of a crystal with substitution disorder is a photo-
active yellow protein crystal illuminated by a laser pulse [6]. In this case, the majority of the
molecules are in ground state and a portion of the molecules are excited by the photons. For not-
too-small-sized crystals, the Bragg scattering is typically negligible at off-Bragg peak positions
where the non-Bragg scattering may be large enough to be detected. The Bragg scattering is
described by the average electron density across all unit cells (unit cell in this paper always
means a primitive unit cell) and the non-Bragg scattering is described by the deviation from
the average. For a unit cell containing only one molecule, a mathematical expression for the
non-Bragg scattering intensity distribution has been given in classic x-ray scattering books of
Guinier [5] and Warren [7].

Retrieval of an electron density profile, from the x-ray scattering intensity distribution of
a non-periodic object, has been carried out very successfully through over-sampling [8–13].
The non-Bragg scattering from a photo excited crystal is similar to that from a single non-
periodic object. For the case of one molecule per unit cell, the ensemble averaged non-Bragg
scattering is simply the scattering of a pseudo-molecule which is the difference, in electron
density, of that of the excited molecule and that of the molecule in the ground state, amplified
by N p(1 − p), where N is the total number of molecules in the crystal and p is the probability
of the molecule in the excited state [5, 7]. Therefore, if the non-Bragg scattering is strong
enough to be detectable, the electron density profile for the excited molecule may be obtained
by applying iterative algorithms [14].

To obtain the pseudo-molecule electron density profile, a very challenging complication
arises when there are multiple molecules per unit cell. This complication is due to the overlap
of the non-Bragg scattering intensities from the excited molecules which are in different
orientations. Mathematically, if not considering the atomicity of the atoms, due to the
overlap, there is an infinite number of solutions. Using a vector verification method with a
sharpened Patterson function (section 2.5), the corresponding pseudo-molecular structure may
be identified from the overlapped total non-Bragg scattering.

In this paper, we are going to obtain mathematical expressions for the x-ray non-Bragg
scattering intensity distributions, in the sense of ensemble averages, for a statistically uniformly
randomly distributed substitution disordered molecular crystal for the case of one molecule
per unit cell, and the general case of multiple molecules per unit cell with multiple excited
states per molecule. In addition, we shall obtain mathematical expressions for the non-Bragg
scattering intensity fluctuations. Knowing the fluctuations is important since we want to know
how many systems one needs to measure in order to be statistically within a certain percentage
of the ensemble averages. What we have found, amazingly, is that the fluctuations are large,
identical to the averages themselves, indicating that in order to be statistically within 10% of
the ensemble averages, one needs to carry out 100 complete measurements, which is extremely
time consuming. The large fluctuations prompt us to consider the effect of spectrometer
resolutions. We shall show that when the spectrometer resolution widths are relatively large,
the fluctuations are suppressed greatly, proportional only to the square root of the total number
of x-ray illuminated unit cells.

We shall first develop, in section 2, the mathematical expressions of the x-ray non-Bragg
scattering intensity distributions, for a molecular crystal with statistically uniform random
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substitution disorder. In section 3, we shall formulate the non-Bragg scattering intensity
fluctuations, and shall show the results of computer Monte Carlo simulations to support our
theoretical predications. We shall give theories, in section 4, for the noise levels in determining
the electron density profiles for the cases of using the non-Bragg scattering and the Bragg
scattering difference Fourier map. Finally in section 5, we shall summarize our results.

2. Non-Bragg scattering intensity distributions

2.1. One excited state and one molecule per unit cell

The x-ray scattering structure factor for an excited crystal in the far field may be expressed as

F(q) =
∫

sample

[
N∑

j=1

ρ(r − R j) +
K∑

k=1

�ρ(r − Rn(k))

]
e−iqrdr, (2.1.1)

where q is the x-ray wavevector transfer in the scattering process, ρ(r) is the electron density
distribution of the molecule in its ground state, R j is the location of the j th unit cell and N is
the total number of unit cells. In (2.1.1), �ρ(r) is the electron density distribution deviation
from ρ(r) when the molecule is in its excited state, K is the number of excited molecules in
the crystal, and n(k) is the unit cell index for the kth excited molecule. The Bragg scattering
structure factor for the crystal can be defined as

FB(q) =
∫

sample

N∑
j=1

(
ρ(r − R j) + K

N
�ρ(r − R j )

)
e−iqrdr, (2.1.2)

and the non-Bragg scattering structure factor for the crystal is defined as the total scattering
structure factor subtracting the Bragg scattering structure factor, namely,

FNB(q) =
∫

sample

[
K∑

k=1

�ρ(r − Rn(k)) −
N∑

j=1

K

N
�ρ(r − R j )

]
e−iqrdr. (2.1.3)

The Bragg scattering structure factor contains a factor whose absolute value squared is the
Bragg scattering lattice factor, defined as

LB(q) =
(

sin(Naqaa/2)

sin(qaa/2)

)2 ( sin(Nbqbb/2)

sin(qbb/2)

)2 ( sin(Ncqcc/2)

sin(qcc/2)

)2

, (2.1.4)

where (a, b, c) are the unit cell base vectors, and (Naa, Nbb, Ncc) are the sizes of the crystal.
Due to this lattice factor, the Bragg scattering is relatively very small at off-Bragg peak
positions.

From (2.1.3), it is easy to see that at Bragg peak positions, the non-Bragg scattering
structure factor is zero. At off-Bragg peak positions, the second term on the right-hand side
of (2.1.3) can be ignored since the term is comparatively very small, and the non-Bragg
scattering structure factor is simply

FNB(q) =
∫

molecule
�ρ(r)e−iqr dr

K∑
k=1

e−iqRn(k) . (2.1.5)

Therefore, ignoring x-ray polarization and absorption, the non-Bragg scattering differential
cross section at off-Bragg peak positions is

dσNB

d�
(q) = r 2

0

∣∣∣∣
∫

molecule
�ρ(r)e−iqrdr

∣∣∣∣
2
∣∣∣∣∣

K∑
k=1

e−iqRn(k)

∣∣∣∣∣
2

. (2.1.6)

In (2.1.6), r0 is the classical electron radius with r 2
0 = 7.94 × 10−10 Å

2
.
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From (2.1.6), we can see that the non-Bragg scattering is a product of two terms, with
one depending only on the change of the electron density profile and the other depending only
on which molecules are excited. For simplicity, we define the difference molecular scattering
factor as

�M(q) =
∣∣∣∣
∫

molecule
�ρ(r)e−iqrdr

∣∣∣∣
2

(2.1.7)

and the non-Bragg scattering lattice factor for the case of one molecule per unit cell as

LNB(q) =
∣∣∣∣∣

K∑
k=1

e−iqRn(k)

∣∣∣∣∣
2

. (2.1.8)

Therefore, (2.1.6) becomes
dσNB

d�
(q) = r 2

0 �M(q)LNB(q). (2.1.9)

To simplify the right-hand side of (2.1.8), we realize that in (2.1.8), each exp(−iqRn(k))

in the series of {exp(−iqRn(k))} represents a random walk in a complex plane with step size
one and a random direction if q is away from the Bragg peaks and K/N � 1. Therefore it is
expected that 〈|∑K

k=1 exp(−iqRn(k))|2〉 = 〈K 〉. 〈· · ·〉 indicates an ensemble average. However,
the random walk is not completely random since the same site cannot be walked on again,
namely n(k) cannot be the same for different k. To handle this case, we use∣∣∣∣∣

K∑
k=1

e−iqRn(k)

∣∣∣∣∣
2

= K +
K∑

k �=k′
e−iq(Rn(k)−Rn(k′ )), (2.1.10)

and 〈
K∑

k �=k′
e−iq(Rn(k)−Rn(k′ ))

〉

suben

= K (K − 1)
〈
e−iq(Rn(k)−Rn(k′ ))

〉
k �=k′ ,suben

. (2.1.11)

In (2.1.11), the subscript suben indicates the subensemble in which every sample has K
molecules excited. Since, in the subensemble, Rn(k) can go through each unit cell in the crystal
and Rn(k′) can go through the remaining N − 1 unit cells if k �= k ′, we have (the more vigorous
mathematical formalism developed in appendix B can be used here).

〈
e−iq(Rn(k)−Rn(k′ ))

〉
k �=k′ , suben

= 1

N(N − 1)

(
N∑

k,k′
e−iq(Rk −Rk′ ) − N

)
. (2.1.12)

The first term in the bracket of the right-hand side of (2.1.12) is simply the Bragg scattering
lattice factor, and it can be ignored when q is at off-Bragg peak positions. Therefore, at off-
Bragg peak positions, the right-hand side is −1/(N − 1), and (2.1.11) becomes〈

K∑
k �=k′

e−iq(Rn(k)−Rn(k′ ))

〉

suben

= −K (K − 1)/(N − 1). (2.1.13)

Therefore the ensemble average of the non-Bragg scattering lattice factor is 〈K 〉 −
〈K (K − 1)/(N − 1)〉, namely

〈LNB(q)〉 = N p(1 − p), (2.1.14)

where p is the molecular excitation probability, and the non-Bragg scattering differential cross
section is 〈

dσNB

d�
(q)

〉
= r 2

0 N p(1 − p)�M(q). (2.1.15)

Equation (2.1.15) is the well-known Laue formula [5, 7].

4



J. Phys.: Condens. Matter 19 (2007) 236232 N Lei

It is evident from (2.1.7) and (2.1.15) that �ρ(r) and ±�ρ(r − r1), for any r1, generate the
same non-Bragg scattering. This may create problems for uniqueness in determining �ρ(r),
and the knowledge of ρ(r) may be used to break the ambiguity. In addition, �ρ(r) and
±�ρ(−r) also create the same non-Bragg scattering [13].

Note that since
∫

�ρ(r) dr = 0, when q is small enough that qr � 1, (2.1.15) becomes
〈

dσNB

d�

〉
= r 2

0 N p(1 − p)q2

∣∣∣∣
∫

molecule
�ρ(r)q̂r dr

∣∣∣∣
2

, (2.1.16)

where q̂ is a unit vector of q, indicating that 〈dσNB/d�〉/q2 is independent of q at small q . This
behaviour is very different from that of a liquid whose scattering intensity approaches a constant
when q becomes small [15]. Moreover, (2.1.16) shows that there is a significant difference in
the non-Bragg scattering intensity distribution at a small q for �ρ(r) and �ρ(r) + ρ0, both of
which create the same non-Bragg scattering at a large q .

The non-Bragg scattering’s non-linearity dependence on the excitation probability p, as
shown in (2.1.15), offers a way to obtain the probability. If the probability is varied from p to
np, achieved, for example, through increasing the trigger laser power by a factor of n, (2.1.15)
becomes 〈

dσNB

d�
(q)

〉
= r 2

0 Nnp�M(q) − r 2
0 Nn2 p2�M(q). (2.1.17)

The coefficients of n and n2 can be obtained through fitting the measured intensity (integrated
over reciprocal space to improve the SNR) versus n to (2.1.17), and the ratio of these two
coefficients gives the value of the excitation probability.

2.2. Any number of excited states, with each unit cell containing any number of molecules

For the case of more than one excited state per molecule, the substitution disorder created non-
Bragg scattering differential cross section contains an interference term. Detailed derivations
are given in appendix A. Here we just list the results.

(a) Any number of excited states, with each unit cell having one molecule.

〈
dσNB

d�

〉
= r 2

0

Ne∑
n=1

N pn|�Fn(q)|2 − r 2
0

N

∣∣∣∣∣
Ne∑

n=1

N pn�Fn(q)

∣∣∣∣∣
2

, (2.2.1)

where �Fn(q) is the Fourier transform of �ρn(r), which is the electron density difference
between the molecule in its nth excited state and the ground state.

(b) One excited state per molecule, with each unit cell having multiple molecules.
〈

dσNB

d�

〉
= r 2

0 N p(1 − p)

Nm∑
m=1

�Mm(q), (2.2.2)

where �Mm(q) is the difference molecule scattering factor for the mth molecule in a unit cell.
(c) Any number of excited states per molecule, with each unit cell having any number of

molecules.
〈

dσNB

d�

〉
= r 2

0

Nm∑
m=1

⎡
⎣
(

Ne∑
n=1

N pn�Mm,n(q)

)
− 1

N

∣∣∣∣∣
Ne∑

n=1

N pn�Fm,n(q)

∣∣∣∣∣
2
⎤
⎦. (2.2.3)

In the expressions above, Ne is the number of excited states per molecule, Nm is the number of
molecules per unit cell, pn is the probability for a molecule being at its nth excited state, �Fm,n

is the Fourier transform of ρm,n(r) − ρm(r), with ρm,n(r) and ρm(r) the electron densities
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for the mth molecule (in a unit cell) in its nth excited and ground states, respectively, and
�Mm,n = |�Fm,n |2. For case (b) (only one excited state), to determine each �Mm(q) from the
experimental data, assuming that the excitation probabilities are small, we may use a Patterson
vector verification method (see section 2.5).

2.3. Temperature effect on substitution disorder created non-Bragg scattering

At a non-zero temperature, the molecules may move around their equilibrium positions as
well as the atoms within the molecules. The correlation among the motions of the atoms in
a single unit cell creates diffuse scattering [16]. Additional motion correlation of unit cells
creates the typical thermal diffuse scattering [7] for crystals. It is reasonable to assume that the
diffuse scattering unrelated to photo exitations does not change much before and after a photo
excitation. Beyond the thermal diffuse scattering, what happens to the substitution disorder
created non-Bragg scattering due to motions of the unit cells?

Assuming that the molecules do not rotate and are rigid, the unit cell motion (no rotation)
affected substitution disorder created non-Bragg scattering structure factor can be described by

FNB(q) =
∫

molecule
�ρ(r)e−iqr dr

K∑
k=1

e−iq(Rn(k)+δn(k)), (2.3.1)

where δn(k) represents the deviation from its equilibrium position at a particular time for the
molecule of index n(k). Therefore, the non-Bragg scattering lattice factor is

LNB(q) =
∣∣∣∣∣

K∑
k=1

e−iq(Rn(k)+δn(k))

∣∣∣∣∣
2

. (2.3.2)

We ignore the correlation among and assume a Gaussian probability for δn(k), and in
addition we assume that 〈(qδn(k))

2〉 is the same for all molecules. Taking an ensemble average
on (2.3.2), we have

〈LNB(q)〉 =
〈

K∑
k �=k′

eiq(Rn(k)−Rn(k′ ))

〉
e−〈(qδ)2〉 + 〈K 〉. (2.3.3)

From (2.1.16), we know that (2.3.3) is just

〈LNB(q)〉 = N p − N p2e−〈(qδ)2〉. (2.3.4)

For the general case, it is easy to show that the substitution disorder created non-Bragg
scattering differential cross section with temperature effect is, assuming that each molecule’s
displacement from its equilibrium position is uncorrelated to others,

〈
dσNB

d�

〉
= r 2

0

Nm∑
m=1

⎡
⎣
(

Ne∑
n=1

N pn�Mm,n(q)

)
− 1

N

∣∣∣∣∣
Ne∑

n=1

N pn�Fm,n(q)

∣∣∣∣∣
2

e−〈(qδm)2〉
⎤
⎦, (2.3.5)

where δm is the displacement from its equilibrium position for the mth molecule in a unit cell.
Equation (2.3.5) shows that the thermal motion does not affect the main non-Bragg scattering
term

∑Nm
m=1

∑Ne
n=1 N pn�Mm,n(q), unlike the case for the Bragg peak intensities which decrease

dramatically once q is over a threshold due to the Debye–Waller thermal motion factors.
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2.4. Is the non-Bragg scattering experimentally measurable?

To use the substitution disorder created non-Bragg scattering, it is crucial to know theoretically
whether, amid the noise created by the solvent in the case of a biological sample and air
scattering, the non-Bragg scattering is detectable. In this subsection, we shall answer this
question with a simplified example.

We assume that a single carbon atom moves from (−1, 0, 0) to (1, 0, 0) during an
excitation. The unit cell is a cube with a size of 503 Å

3
, containing only one molecule. We

assume that the entire crystal has a size of 8 × 1018 Å
3
, indicating that the sample contains

6.4 × 1013 unit cells. The excitation probability is 0.1. Ignoring x-ray polarization and
absorption, the substitution disorder created non-Bragg scattering intensity is close to

〈INB(q)〉 = 1.8 × 104 I0 sin2 qx |FC(q)|2 ���t, (2.4.1)

where FC(q) is the carbon atom x-ray scattering factor, �� is the solid angle that the detection
area (typically the area of a pixel or binned pixels) makes with the sample, �t is the time
duration of measurement, and I0 is the incoming x-ray intensity per unit time per Å

2
(we

assume that the sample is completely covered by the incoming x-rays).
We only consider the noise from solvent scattering and treat the solvent as water. Assuming

that half of the sample volume is water, there are nearly 2.4×1017 water molecules. Therefore,
the scattering intensity from the water is

〈Iwater〉 = 1.9 × 108 I0 Iwater molecule(q)���t . (2.4.2)

In (2.4.2), Iwater molecule(q) is the water molecular x-ray scattering differential cross-section,
whose value ranges from about 100 electron units at q = 0 to about 600 electron units at its peak
location of q = 2.0 Å

−1
[17]. The average noise from the water scattering is simply

√〈Iwater〉.
To be able to measure 〈INB(q)〉 accurately, 〈INB(q)〉 has to be much larger than

√〈Iwater〉.
For a beamline of incoming x-ray photon intensity of 1013 s−1 over an area of 0.01 mm2,
I0 = 10 Å

−2
s−1. For a solid angle �� = 1.0 × 10−3, 〈INB(q)〉 = 180 × �t|FC(q)|2 sin2 qx

and 〈Iwater〉 = 1.9 × 106 Iwatermolecule(q)�t . If we set, at q = 2.0 Å
−1

, 〈INB(q)〉 >
√〈Iwater〉,

and take qx = 2 Å
−1

, meaning FC(qx) = 4.1, we have �t > 182 s, which is much longer than
the time scales associated with a typical biological time-dependent process (further analysis
in section 4.2 seems to suggest that even though the non-Bragg scattering data are very noisy,
the reconstructed electron density profile may be good enough). It is obvious that the solvent
scattering is detrimental to using the non-Bragg scattering to extract time-dependent structural
changes. Therefore, the usage of substitution disorder created non-Bragg scattering is likely
limited to (a) crystals without solvent, such as those formed by chemical compounds, and
(b) shining the trigger laser continuously on to the sample so that the excitation probabilities
are not time variants and the data collection time duration can be as long as desired.

2.5. Patterson vector verification method to solve non-Bragg scattering overlap

We give an example to illustrate how to use a Patterson map to solve the overlap problem
in (2.2.2) for the case of multiple molecules in a unit cell. We draw in figure 1(a) two atoms
(in a molecule) which move after an excitation from their original positions denoted by circles
to new locations denoted by filled circles. We assume that there are four molecules in a unit
cell which has a four-fold symmetry. The Patterson peaks from the total non-Bragg scattering
are shown in figure 1(b), with filled circles indicating positive peaks and non-filled circles
indicating negative peaks. In generating the Patterson peaks, we can use a sharpened Patterson
map scheme described in appendix C.

7
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Figure 1. (a) Atom locations. The original locations are represented by circles and the locations
after excitation are represented by filled circles. (b) Patterson map for atoms in (a). (c) Obtained
atom locations from the Patterson map through the procedure described in section 2.5.

We put the Patterson peak vectors in the upper plane into a set denoted by P
(for peaks fall on the x axis, we select only those with x > 0), namely P =
{r−

1 , r−
2 , r−

3 , r−
4 , r−

5 , r−
6 , r−

7 , r−
8 , r9, r10, r11, r12}. The superscript ‘−’ indicates that the

Patterson peak is negative. Because a peak in a Patterson map corresponds to a vector starting
from one atom to the next in a molecule, we can assign (0, 0) as the location of one atom and
one of the vectors in P as the location of another atom. We first take away the largest vector
in P , say r−

2 , and put r−
2 in a solution set called S (the vectors in S are the locations of atoms).

Now we have S = {(0, 0), r−
2 }. We look for symmetry elements of r−

2 among the vectors in
set P . We find that r−

5 is a symmetry vector of r−
2 . Therefore, we remove r−

5 from P and have
P = {r−

1 , r−
3 , r−

4 , r−
6 , r−

7 , r−
8 , r9, r10, r11, r12}.

Next, we pick the largest vector r−
1 in P . To determine whether r−

1 is an atom location, we
need to check whether P contains all the vectors which are from r−

1 to known atom locations
specified in set S or from a vector in set S to r−

1 . At this moment, except for the origin, there
is only one atom located at r−

2 in the solution set S. Therefore we only need to check r−
2 − r−

1 .
We find that r−

2 − r−
1 = r10 is in set P . Therefore r−

1 is an atom location, and we remove it
from P and put it into S. r−

4 is removed from set P since r−
4 is a symmetry element of r−

1 . r11

is removed from set P since r11 = r−
2 − r−

1 . Since r9 is a symmetry element of r11, we remove
r9 from P as well. At this point, P = {r−

3 , r−
6 , r−

7 , r−
8 , r10, r12} and S = {0, r−

1 , r−
2 }.

We now examine r−
3 (we try first not to pick those vectors in P which may be the symmetry

elements of the vectors in the first quadrant). r−
3 is rejected as an atom location since P does

8
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not contain vector r−
3 − r−

1 . Similarly, r−
7 is also rejected. Now we examine r10. We examine

the vectors in the solution set S to r10 or from r10 to those vectors in S. We find that both
r−

2 − r10 = r−
7 and r10 − r−

1 = r−
6 are in set P . Therefore r10 is an atom location and is

moved from P to S. r12 is a symmetry element of r10 and is removed from P . Therefore, at
this point we have P = {r−

3 , r−
6 , r−

7 , r−
8 } and S = {0, r−

2 , r−
1 , r10}. Since r−

8 is a symmetry
element of the non-atom location vector r−

7 , and r−
6 is a symmetry element of the non-atom

location vector r−
3 , we remove r−

3 , r−
6 , r−

7 , and r−
8 from set P . At this point set P is empty and

the solution S = {0, r−
2 , r−

1 , r10}. Figure 1(c) shows the solution atom locations which are the
origin inverted plus a shift along the x axis from the original one shown in figure 1(a).

3. Differential cross section fluctuation of the non-Bragg scattering

Using the approach developed in section 2, it is possible to calculate the non-Bragg scattering
differential cross section deviation for a particular system from the ensemble average. We
shall consider both cases of infinitely sharp and the realistic not-sharp-enough spectrometer
resolutions.

3.1. Infinitely sharp spectrometer resolutions

In this subsection, we consider the fluctuation of the scattering differential cross section due
to the uncertainties in the distribution of the excited molecules n(k) and the total number of
excited molecules K under the condition of constant trigger laser power.

We need to know 〈(LNB(q))2〉. It is easier to first consider the subensemble average,
with the subensemble as the one for systems having the same number of excited molecules.
The ensemble average is simply the average of the subensemble averages. Intuitively
〈(LNB(q))2〉suben can be very large, as can be seen from (2.1.10). On the right-hand
side of (2.1.10), K is about the average of the non-Bragg scattering lattice factor, and∑K

k �=k′ exp
[
iq(Rn(k) − Rn(k′))

]
is basically the deviation from the average. Using a random

walk argument, this deviation has a magnitude of
√

K (K − 1) ≈ K equaling the subensemble
average. The detailed mathematical derivation in appendix B.1 shows that

〈L2
NB(q)〉suben = 2K 2

(
1 − K

N

)2

. (3.1.1)

Since K follows a binomial distribution, we have

〈(LNB(q))2〉 − (〈LNB(q)〉)2 = (N p)2(1 − p)2, (3.1.2)

namely
√〈

(LNB(q) − 〈LNB(q)〉)2
〉

〈LNB(q)〉 = 1. (3.1.3)

For the more general case of multiple molecules per unit cell, coupled with multiple excited
states per molecule, (3.1.3) also holds true (see appendix B.3). Equation (3.1.3) suggests that
the non-Bragg scattering intensity fluctuation average is large without spectrometer resolution
considerations. Equation (3.1.3) is the result that the excited molecules are uniformly randomly
distributed. For general disordered materials, the x-ray diffuse scattering differential cross
section fluctuation is related to how the atoms are correlated spatially statistically [18].

9
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3.2. Spectrometer resolution widths >1/sample linear sizes

The actual x-ray scattering differential cross section is the convolution of the ideal scattering
differential cross section and the corresponding spectrometer resolution function. We first
consider the simple case of one molecule per unit cell and one excited state per molecule.
With spectrometer resolution considerations, the real non-Bragg scattering differential cross
section can be described by

dσNB,Re

d�
= r 2

0

∫
∞

�M(q + q′)LNB(q + q′)R(q′) dq′, (3.2.1)

where R represents the spectrometer resolution function.
�M(q) is nearly a constant over the range of the resolution widths, which are often

0.001 Å
−1

or smaller. Therefore (3.2.1) can be written as

dσNB,Re

d�
= r 2

0 �M(q)

∫
∞

LNB(q + q′)R(q′) dq′. (3.2.2)

Since 〈LNB(q)〉 is independent of q, (3.2.2) indicates that the non-Bragg scattering ensemble
average is irrelevant to the spectrometer resolution, namely〈

dσNB,Re

d�

〉
= r 2

0 �M(q)〈LNB〉. (3.2.3)

However, the ensemble average of the square of the non-Bragg scattering is spectrometer
resolution dependent.

Denoting the resolution convoluted non-Bragg scattering lattice factor as LNB,Re(q), we
have

〈(LNB,Re(q))2〉 =
∫

∞

∫
∞

〈LNB(q + q′
1)LNB(q + q′

2)〉R(q′
1)R(q′

2) dq′
1 dq′

2. (3.2.4)

Since when q′
1 �= q′

2, 〈LNB(q + q′
1)LNB(q + q′

2)〉 is not the same as 〈LNB(q)LNB(q)〉,
〈(LNB(q))2〉 �= 〈L2

NB(q)〉 and therefore the non-Bragg scattering intensity fluctuation ensemble
average differs between infinitely sharp and non-infinitely sharp spectrometer resolutions.

The detailed mathematical derivation in appendix B.4 shows that

〈(LNB,Re(q))2〉suben =
(

1 + (2π)d/2

V σxσyσz

)
(〈LNB(q)〉suben)

2, (3.2.5)

where d is the dimension of the sample and V is the x-ray illuminated sample volume. σx , σy ,
and σz are the Gaussian half widths of the spectrometer resolution function in reciprocal space
along qx , qy , and qz , respectively. From (3.2.5), we have√〈

(LNB,Re(q) − 〈
LNB,Re(q)

〉
)2
〉

〈LNB,Re(q)〉 =
√

(2π)d/2

NVcellσxσyσz
. (3.2.6)

Using the method developed in appendix B.3, we can show that (3.2.6) is also valid for the
more general case of multiple molecules in a unit cell coupled with multiple excited states per
molecule. Note that (3.2.6) is valid under the condition of 1 � (π)d/2/(Vcellσxσyσz) � N ,
where Vcell is the unit cell volume.

Equation (3.2.6) shows that the relative intensity fluctuation can be negligibly small in the
case of a non-sharp resolution function since NVcellσxσyσz � 1. For example, at the Advanced
Photon Source 14 ID-B, the angular divergences (HWHM) are about 11 μrads (horizontal) by
3 μrads (vertical), and the energy spread is about 1 eV (HWHM). At an x-ray wavelength
of 1 Å, we have σx ≈ 6.9 × 10−5 Å

−1
, σy ≈ 1.9 × 10−5 Å

−1
, σz ≈ 2.3 × 10−4 Å

−1

10
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at
√

q2
x + q2

y = 6 Å
−1

. Therefore, for a sample size of (0.1 mm)3, the relative non-Bragg

scattering intensity fluctuation is
√

(2π)d/2/(V σxσyσz) ≈ 0.0072, which is much smaller than
what is expected for the case of an infinitely sharp resolution. Detector pixel and illuminated
sample sizes typically increase greatly the effective spectrometer resolution widths, making the
non-Bragg scattering fluctuation even smaller.

The quench effect on the non-Bragg scattering differential cross section fluctuation
due to spectrometer resolutions can be easily understood by examining (2.1.10).
With a finite-width spectrometer resolution function, the fluctuation term in (2.1.10)∑K

k �=k′ exp[−iq(Rn(k) − Rn(k′))] is suppressed by the resolution and has contributions from only
those pairs which are relatively close to each other, leading to a much smaller fluctuation.

3.3. Computer Monte Carlo simulations

To support our claims in the last two subsections for the scattering fluctuations, we carry
out computer Monte Carlo simulations on a one-dimensional crystal. We use the random
number generator provided by JAVA 1.4.2. In the crystal, each unit cell contains only one
molecule. What we want to test are (2.1.15) and (3.1.3), which, respectively, describe the
ensemble averages of the non-Bragg scattering lattice factor and its fluctuation in the case of
an infinitely sharp spectrometer resolution, and (3.2.6), which describes the ensemble average
of the non-Bragg scattering differential cross section relative fluctuation with a non-infinitely
sharp resolution. The unit cell size is 100 Å. We set q = 0.03 Å

−1
and p = 0.2 for the

excitation probability. We consider an ensemble consisting of 100 such systems.
For an infinitely sharp spectrometer resolution, we show in figure 2(a) our computer

simulation results. In the figure, we set the number of unit cells N = 20 000. The
figure clearly indicates large intensity fluctuation from system to system. The average
value of the non-Bragg scattering lattice factors in the simulation is 3611, whereas our
theoretical prediction is N × 0.2 × (1 − 0.2) = 3200. The relative fluctuation of the lattice
factors

√〈(LNB(q) − 〈LNB(q)〉)2〉/〈LNB(q)〉 is 1.07, while our theoretical prediction is 1. In
figure 2(b), we plot

√〈(LNB(q) − 〈LNB(q)〉)2〉/〈LNB(q)〉 versus N for N varying from 500
to 40 000. It can be easily seen that the relative fluctuation is about one, agreeing with our
prediction.

To show the spectrometer resolution effect, we use a Gaussian shaped functional form for
the resolution function with a half width of σx = 0.0002 Å

−1
. In figure 3(a), we plot the

computer simulation result with N = 20 000. The figure shows that the large fluctuation
presented in figure 2(a) is greatly reduced. The simulation gives an average non-Bragg
scattering lattice factor of 3202 and a relative fluctuation of 0.083, agreeing very well with our
theoretical predictions of 3200 and 0.080, respectively. In figure 3(b), we plot, in logarithmic
scale for both axes,

√〈(LNB,Re(q) − 〈LNB,Re(q)〉)2〉/〈LNB,Re(q)〉 versus N with N varying
from 400 to 40 000. The figure clearly demonstrates that the relative non-Bragg scattering
lattice factor behaves as 1/

√
N , consistent with our theoretical prediction.

4. Electron density noise calculations

Since experimental data contain noise, it is important to understand what determines the noise
for the electron density profile so that an experiment can be better designed. The signal is the
computed �ρ(r) from experimental data, and the noise is the deviation of the computed �ρ(r)
from its ensemble average. In this section, we shall investigate the noise in �ρ(r) for both
cases of using Bragg and non-Bragg scattering.

11
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Figure 2. (a) Computer simulated substitution disorder created non-Bragg scattering lattice factors
for 100 one-dimensional (1D) crystals with an infinitely sharp spectrometer resolution. There is
only one excitation state per molecule. Each crystal contains exactly the same 20 000 unit cells and

each unit cell has a size of 102 Å. q = 0.03 Å
−1

. The excitation probability p is 0.2. The average
scattering lattice factor is 3611 and the relative fluctuation

√〈(LNB(q) − 〈LNB(q)〉)2〉/〈LNB(q)〉
is 1.07. (b) Plot of computer simulated

√〈(LNB(q) − 〈LNB(q)〉)2〉/〈L Nb(q)〉 for different total
numbers of unit cells in the crystal with an infinitely sharp spectrometer resolution. The other
parameters take the same values as those in (a).

Often, to use Bragg peaks to extract �ρ(r), the corresponding difference Fourier map
is used [19]. In this scenario, the contribution to the noise in �ρ(r) can come from a few
sources which include the quantum fluctuations of the scattering process and the excitation of
the molecules. The scattered x-ray intensity fluctuates as a Poisson random variable, and the
excitation number fluctuations have been considered in section 3. We want to know what the
uncertainties are in determining �ρ(r) due to these fluctuations. We shall consider the simple
case of only one molecule per unit cell with only one excited state per molecule. We ignore the
non-Bragg scattering intensity fluctuation created by the excitation process since it is greatly
suppressed by the spectrometer resolution. Factors which we ignore but do contribute to the
�ρ(r) noise are the uncertainties in the incoming x-ray intensity and the intensity of the laser
light used to excite the molecules, and the solvent (in biological samples) and air scattering
fluctuations.

4.1. Difference Fourier map

In this subsection, we consider the Bragg scattering difference map created uncertainty in
�ρ(r). We denote FB,G and FB,E as the Bragg scattering structure factors of the molecule
in the ground and excited states, respectively. We assume that the magnitudes of FB,G and FB,E

12
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Figure 3. (a) Computer simulated substitution disorder created non-Bragg scattering lattice factors
for 100 1D crystals with a Gaussian shaped spectrometer resolution function. The Gaussian half

width is 0.0002 Å
−1

. Each crystal contains exactly the same 20 000 unit cells and each unit cell has

a size of 102 Å. q = 0.03 Å
−1

. The probability of excitation p is 0.2. The average lattice factor
has a value of 3202, and the relative fluctuation

√〈(LNB(q) − 〈LNB(q)〉)2〉/〈LNB(q)〉 is 0.083.
(b) Plot of computer simulated

√〈(LNB(q) − 〈LNB(q)〉)2〉/〈L Nb(q)〉 for different total numbers
of unit cells in the crystal with a Gaussian shaped spectrometer resolution function of half width

0.0002 Å
−1

. The other parameters are the same as those in (a).

are close. Under the strong assumption that the summation of (FB,E − FB,G) exp(−2iαG) over
all the Bragg peaks is zero, where αG is the phase in FB,G, it is easy to show that �ρ(r) can be
obtained by [1]

�ρ(r) = 2

pVcell

∑
Q j

(|FB,E| − |FB,G |)e−i(Q j r−αG). (4.1.1)

Therefore, the noise squared in �ρ(r) due to the scattering process is

|δ�ρ(r)|2 =
(

2

pVcell

)2 ∑
Q j Q j ′

(δ|FB,E(Q j)| − δ|FB,G(Q j)|)

× (δ|FB,E(Q j ′)| − δ|FB,G(Q j ′)|)e−i[Q j r−αG−Q j ′r+α′
G], (4.1.2)

where δ|FB,E(Q j)| and δ|FB,G(Q j)| are the noises associated with the Bragg scattering
structure factor magnitudes for the crystal in excited and ground states, respectively. To
simplify (4.1.2), we note that δ|FB,E(Q j)| and δ|FB,G(Q j )| are uncorrelated, and δ|FB,E(Q j)|
and δ|FB,E(Q j ′)| are also uncorrelated unless j = j ′. We assume that the excitation probability

13
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p � 1 and 〈(δ|FB,E(Q j)|)2〉 ≈ 〈(δ|FB,G(Q j)|)2〉. Taking the ensemble average, (4.1.2)
becomes

〈|δ�ρ(r)|2〉 = 2

(
2

pVcell

)2 ∑
Q j

〈(δ|FB,G(Q j)|)2〉. (4.1.3)

To compute 〈(δ|FB,G(Q j)|)2〉, we note that the x-ray scattering intensity for the crystal in
the ground state is

IB,G = r 2
0 N I0�t|FB,G|2. (4.1.4)

Since 〈(δ IB,G)2〉 = 〈IB,G〉, (4.1.4) gives

〈(δ|FB,G|)2〉 = 1

4r 2
0�t I0 N

. (4.1.5)

Substituting (4.1.5) in (4.1.3), we have

〈|δ�ρ(r)|2〉 =
(

2

pVcell

)2 ∑
Q j

1

2r 2
0�t I0 N

. (4.1.6)

Carrying out the summation in Q j up to a surface of radius Qmax, (4.1.6) becomes

〈(δ�ρB(r))2〉 = 2D(d)Qd
max

V p2r 2
0 �t I0(2π)d

. (4.1.7)

In (4.1.7), D(d) is a coefficient associated with the volume of a sphere in d-dimension.
Equation (4.1.7) indicates that the noise in the determined electron density is of the same
value everywhere in the unit cell, and the larger the Qmax, the larger is the noise. This
behaviour can be understood intuitively by realizing that each Bragg peak contributes to the
uncertainty in �ρ(r), due to scattered x-ray photon count fluctuations, by the same amount.
In addition, (4.1.7) shows that, for a very small excitation probability, the noise can be very
high. This high noise level due to the dependence on p−2 is lessened greatly in the case of
using the non-Bragg scattering to determine the electron density distribution. It is intuitively
thought that the higher the Qmax is, the more accurate is �ρ(r). This intuition is purely based
on the property of Fourier transforms, since the scattering data with a higher Qmax will reveal a
sharper contour for �ρ(r). Nevertheless, without the noises in the scattering data, �ρ(r) does
not change from one system to another at a particular Qmax.

To get a sense of the magnitude for the electron density fluctuation, we take d = 3,
I0 = 1 Å

−2
s−1, p = 0.1, V = 1 × 1018 Å

3
, �t = 10−6 s, and Qmax = 2π Å

−1
, yielding√〈(δ�ρ(r))2〉 = 1.0 Å

−3
, which is large and comparable to the carbon atom average electron

density of 0.6 Å
−3

.

4.2. Non-Bragg scattering

In this subsection, we determine the fluctuation in determining the electron density profile due
to the fluctuation in the non-Bragg scattering intensity. Integrating the non-Bragg scattering
intensity over a small solid angle �� around a particular q, the measured scattering intensity
is

INB(q) = Nr 2
0 �t I0 p(1 − p)��

∣∣∣∣
∫

cell
�ρ(r)e−iqr dr

∣∣∣∣
2

. (4.2.1)

When the scattering intensity has a small deviation δ INB(q), the electron density will
consequently have a small deviation δ�ρ(r). Ignoring the second-order term in δ�ρ(r), we
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have

δl INB(q) = N I0r 2
0 �t p(1 − p)��

×
(∫

cell
�ρ(r)e−iqr dr

∫
cell

δl�ρ(r′)eiqr′
dr′ + c.c.

)
. (4.2.2)

In (4.2.2), we add a subscript l to indicate the lth complete data set, and c.c. to indicate the
complex conjugate of the first term in the bracket. Summing over q, we have

∑
q

δl INB(q) = 2N I0r 2
0 �t p(1 − p)〈��〉

(
2π

�q

)d ∫
cell

�ρ(r)δl�ρ(r)dr. (4.2.3)

In (4.2.3), �q is the step size in q, and 〈��〉 is the average solid angle each pixel makes with
the sample. Taking the ensemble average of the squared on both sides of (4.2.3), and noting that
〈(δl INB(q))2〉 = 〈INB(q)〉 and 〈δl INB(q)δl INB(q′)q �=q′ 〉 = 0, after carrying out the summation
of 〈INB(q)〉 over q, we have∫

cell
�ρ(r)2dr = 4N I0r 2

0 �t p(1 − p) 〈��〉
(

2π

�q

)d

×
〈(∫

cell
�ρ(r)δl�ρ(r) dr

)2
〉

. (4.2.4)

The ensemble average of the right-hand side of (4.2.4) can be expressed as〈(∫
cell

�ρ(r)δl�ρ(r) dr
)2

〉

= lim
Nl →∞

∑Nl
l=1

∫
cell �ρ(r)δl�ρ(r)dr

∫
cell �ρ(r′)δl�ρ(r′)dr′

Nl
. (4.2.5)

To compute the right-hand side of (4.2.5), we divide the unit cell into divisions of volume
of (π/qmax)

d and use j to denote a particular division. Since for l �= l ′, δl�ρ(r) and δl′�ρ(r)
are uncorrelated, and for j �= j ′, δl�ρ(r j )δl�ρ(r j ′) is assumed to randomly distribute around
zero, namely

lim
Nl →∞

∑Nl
l=1; j �= j ′ δl�ρ(r j)δl�ρ(r j ′)

Nl
= 0, (4.2.6)

equation (4.2.5) becomes

〈(∫
cell

�ρ(r)δl�ρ(r) dr
)2

〉
= lim

Nl →∞

(
π

qmax

)2d ∑N j

j=1 �ρ(r j )
2
∑Nl

l=1 [δl�ρ(r j)]2

Nl

=
(

π

qmax

)2d N j∑
j=1

�ρ(r j)
2〈[δ�ρ(r j )]2〉, (4.2.7)

where N j = Vcell/(π/qmax)
d . Therefore (4.2.4) becomes

∑N j

j=1[�ρ(r j)]2〈[δ�ρ(r j )]2〉∑N j

j=1[�ρ(r j )]2
= (�qqmax)

d

4N I0r 2
0 �t p(1 − p)〈��〉(2π2)d

. (4.2.8)

The left-hand side of (4.2.8) is the averaged noise level squared, weighted by �ρ(r j)
2.

Equation (4.2.8) shows that without solvent and air scattering, and with no electronic noises,
the weighted ensemble average of the noise squared of the determined electron density, under
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a fixed pixel solid angle 〈��〉, is proportional to �q3 for a three-dimensional (3D) sample,
meaning that sampling the scattering intensity distribution more finely should reduce drastically
the noise in the determined electron density profile. In the extreme case for a 3D sample, we
have �q = 2π

√〈��〉/λ, and (4.2.8) can be written as
∑N j

j=1 �ρNB(r j )
2〈[δ�ρNB(r j )]2〉∑N j

j=1 �ρNB(r j )2
= q3

max

√〈��〉
4N I0r 2

0�t p(1 − p)(πλ)3
. (4.2.9)

Equation (4.2.9) shows that the smaller the pixel solid angle ��, the smaller the determined
electron density noise level (achieved through much more computation time). For N =
8 × 1012, qmax = 2π Å

−1
, p = 0.1, λ = 1 Å, 〈��〉 = 10−4, �t = 10−6 s, and

I0 = 1 Å
−2

s−1, (4.2.9) gives that the weighted ensemble average of the electron density
uncertainty is

√〈(δ�ρNB(r))2〉weighted = 0.74 Å
−3

, which is on the same level as the electron
density fluctuation determined by using the difference Fourier map. Since the over-sampling
ratio is proportional to (�q)−d , the noise in �ρNB(r) is inversely proportional to the over-
sampling ratio. Equation (4.2.8) suggests that if 〈��〉 is infinitely small, the uncertainty in
determining the electron density profile can be infinitely small as well, even if the detected
non-Bragg scattering data are very noisy. Furthermore, (4.2.9) suggests to us the use of x-rays
of longer wavelength to reduce the noise in the �ρ(r) determination.

In the presence of solvent (water) in the sample, the noise in the non-Bragg scattering
contains an additional term associated with the solvent scattering noise, which cannot be
subtracted. In this case, (4.2.8) is replaced by
∑N j

j=1 [�ρ(r j)]2〈[δ�ρ(r j )]2〉∑N j

j=1 [�ρ(r j)]2

=
(�qqmax)

d

(
1 + NWqd

max

N(2π2)d p(1−p)r2
0

×
∫

dq dσW,molecule(q)/d�∑N j
j=1 [�ρ(r j )]2

)

4N I0r 2
0 �t p(1 − p)〈��〉(2π2)d

. (4.2.10)

In (4.2.10), NW is the number of water molecules in the sample, and dσW,molecule(q)/d� is the
water molecule x-ray scattering differential cross section in electron units. As demonstrated
by (4.2.9), (4.2.10) suggests that, even with solvent scattering, the uncertainty in determining
�ρNB(r) is still inversely proportional to the over-sampling ratio, and for a 3D sample, the
uncertainty is lower-bounded by how small 〈��〉 is.

4.3. Noise level comparison

The crucial criterion in noise comparison should be that the time durations spent on collecting
the entire sets of data for the Bragg and non-Bragg scattering be the same. However, to collect
a complete set of data, the sample needs to be at many different orientations. Therefore, the
total time spent in collecting a set of data may be different for Bragg and non-Bragg scattering.

Using the Laue scattering technique with incident x-rays of a broad wavelength spectrum
from λmin to λmax (pink x-rays), ignoring the conic region around the rotation axis in reciprocal
space [20], the number of times to rotate the sample to cover half of the possible q-space is (see
figure 4) about π/� AOB (note that rotating the sample to move point A to point B does not
mean that there is no q-space undetected except the cones between the two adjacent angular
positions since the inner circle has a larger curvature). It is easy to obtain [21] that

� AOB = arcsin
qmaxλmax

4π
− arcsin

qmaxλmin

4π
.
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Figure 4. Diagram to show a cut in Ewald spheres
corresponding to a Laue scattering with the largest x-ray
wavelength of λmax and the smallest wavelength of λmin.
OA = OB = qmax.

For a beamline offering a pink x-ray spectrum of 7 to 13 keV, λmin = 0.95 Å and λmax = 1.78 Å.
Taking qmax = 6 Å

−1
, we have � AOB = 0.55 rad. Therefore the number of sample angular

positions in using the Laue Bragg scattering is about 6. In reality, the need to resolve overlapped
Bragg peaks typically demands that � AOB = 0.1 rad, meaning that the number of sample
angular positions to collect a complete set of data is about 31.

In measuring the non-Bragg scattering, at the start we may use only a few sample
angular positions. Depending on the result of the data analysis, we may take data at finer
angular positions. However, if the data analysis cannot be finished quickly to guide whether
measurements at finer angular positions are needed, we may just take data at the positions
between the Bragg peaks, meaning that the data are taken at a linear interval of 2π/V 1/3

cell in 3D
q-space, corresponding to an angular step size of 2π/(qmaxV 1/3

cell ). Therefore there are about

0.5qmaxV 1/3
cell angular positions to cover half of the possible q-space. Taking qmax = 6 Å

−1

and V 1/3
cell = 50 Å, we have 0.5qmaxV 1/3

cell = 150, which is about five times as many as
the number used in the Laue Bragg scattering. Therefore, except at very low excitation
probabilities (p < 0.001), the SNR in the electron density determination from using the
non-Bragg scattering is lower than that from using the Laue Bragg scattering unless the over-
sampling ratio is very high. Nevertheless, if �ρ(r) is confined to a much smaller space, we can
afford to collect data with a much larger step size in reciprocal space.

Instead of using wide spectrum pink x-rays, if using monochromatic x-rays with Bragg
scattering, the data collection relies on finite spectrometer resolution width and/or sample
mosaicity. In this scenario, the sample rotation step size is often about 0.1◦ to 0.3◦, and covering
180◦ means 1800 to 600 sample angular positions, leading to a significant longer time duration
in data collection. Therefore, using time as a criterion for noise level comparison, this mode
of data collection generates a lower SNR in electron density determination than that using the
non-Bragg scattering.

5. Conclusions

In this paper, we first derived the ensemble averages of the non-Bragg scattering differential
cross sections for a crystal having statistically uniformly distributed random substitution
disorder. For the case of one molecule per unit cell, the non-Bragg scattering is just that for a
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single pseudo-molecule of �ρ(r) multiplied by N p(1 − p). For the case of multiple molecules
per unit cell, the non-Bragg scattering is the sum of the molecular scattering factors of �ρ(r)
for all the molecules in the unit cell, resulting in an overlap of the scattering intensities. In
dealing with the non-Bragg scattering overlap, we developed a Patterson verification method.
We showed that the non-Bragg scattering can be easily applied to determine whether there is
one excited state or multiple excited states, and the excitation probability. Using the non-Bragg
scattering to determine the structure of �ρ(r) for crystals without solvent is possible using the
traditional pump–probe approach, although the noise in determining �ρ(r) can be larger than
that by utilizing the Laue Bragg scattering in the case of not-too-small excitation probabilities.
In the presence of solvent, if there is only one excited state, we can shine the trigger laser
continuously on to the sample and collect data with a time duration long enough to allow clear
determination of �ρ(r). In the presence of solvent, if there are multiple excited states per
molecule, we can shine the trigger laser continuously to obtain |∑Ne

n=1 pn�Fn(q)|2. Whether
|∑Ne

n=1 pn�Fn(q)|2 can give us clear �ρ(r) at its excitation states needs further investigation.
Caution is needed to make sure that the laser light will not heat up the sample much. In reaching
the conclusions above, we assumed that the non-Bragg scattering associated with the thermal
motions of the atoms and the unit cells and the non-Bragg scattering associated with crystal
defects are unchanged before and after the trigger laser pulse.

We obtained the non-Bragg scattering intensity fluctuations associated with the
randomness of the molecular excitations. We showed that under the condition of an infinitely
sharp spectrometer resolution, the ensemble averages of the fluctuations are identical to the
ensemble averages themselves, indicating very large fluctuations. However, in the case of a
non-infinitely sharp spectrometer resolution, which is typical if the sample is not too small,
the fluctuations from system to system are negligibly small, proportional to the square root
of the total number of x-ray illuminated unit cells. The results of our computer Monte Carlo
simulations on 1D crystal systems were shown to be consistent with our theory. For small
samples, one needs to tune the spectrometer so that the resolution widths are large enough to
suppress the fluctuations.

Finally, we considered the noise levels in determining �ρ(r) due to the Poisson noises
associated with both the Bragg and the non-Bragg scattering. We showed that the noises in
determining �ρ(r) through both the Bragg and the non-Bragg scattering can be significant.
The noise in determining �ρ(r) associated with the non-Bragg scattering can be more than
that associated with the Laue Bragg scattering but smaller than that through monochromatic
Bragg scattering. Nevertheless, we realized the advantage of using the non-Bragg scattering
to determine �ρ(r) due to the lack of systematic errors. Specifically, we found that the noise
levels due to the scattering fluctuations through both the Bragg and the non-Bragg scattering are
proportional to qd/2

max, and for the case of using non-Bragg scattering, the noise level in �ρ(r)
is inversely proportional to the over-sampling ratio. Numerical studies are needed to provide
support for these predications.
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Appendix A. Derivation of the non-Bragg scattering intensity ensemble averages for
more than one excited state with multiple molecules per unit cell

A.1. Two excited states with one molecule per unit cell

In this case, the non-Bragg scattering structure factor is

FNB(q) =
∫

sample

[
K1∑

k1=1

�ρ1(r − Rn1(k1)) +
K2∑

k2=1

�ρ2(r − Rn2(k2))

]
dre−iqr, (A.1.1)

where n1(k1) and n2(k2) are the indices of the unit cells which are in the first and the second
excited states, respectively, and K1 and K2 are the numbers of molecules in the first and the
second excited states, respectively. Defining �F1(q) and �F2(q) as the Fourier transforms
of �ρ1(r) and �ρ2(r), respectively, the non-Bragg scattering differential cross section is just
(ignoring x-ray polarization and absorption)

dσNB

d�
= r 2

0 |�F1(q)|2
∣∣∣∣∣

K1∑
k1=1

e−iqRn1(k1 )

∣∣∣∣∣
2

+ r 2
0 |�F2(q)|2

∣∣∣∣∣
K2∑

j2=1

e−iqRn2(k2 )

∣∣∣∣∣
2

+ (cross term),

(A.1.2)

with the (cross term) defined as

(cross term) = r 2
0 �F1(q)�F∗

2 (q)

K1∑
k1=1

e−iqRn1(k1 )

K2∑
k2=1

eiqRn2(k2 )

+ r 2
0�F∗

1 (q)�F2(q)

K1∑
k1=1

eiqRn1(k1 )

K2∑
k2=1

e−iqRn2(k2 ) . (A.1.3)

Using (2.1.13), we have

〈(crossterm)〉 = −r 2
0 〈K1 K2〉
N − 1

[�F1(q)�F∗
2 (q) + �F∗

1 (q)�F2(q)]. (A.1.4)

Therefore, the non-Bragg scattering differential cross section is
〈

dσNB

d�
(q)

〉
= r 2

0 N p1(1 − p1) |�F1(q)|2 + 
N p2(1 − p2)|�F2(q)|2

− r 2
0 〈K1 K2〉
N − 1

[�F1(q)�F∗
2 (q) + �F∗

1 (q)�F2(q)]. (A.1.5)

Since 〈K1 K2〉 = N(N − 1)p1 p2, (A.1.5) becomes
〈

dσNB

d�

〉
= r 2

0 N p1|�F1(q)|2 + r 2
0 N p2|�F2(q)|2 − r 2

0

N
|N p1�F1(q) + N p2�F2(q)|2. (A.1.6)

Equation (A.1.6) can be generalized to account for the case of any number of excited states per
molecule. The general form is, at off-Bragg peak positions,

〈
dσNB

d�

〉
= r 2

0

Ne∑
n=1

N pn|�Fn(q)|2 − r 2
0

N

∣∣∣∣∣
Ne∑

n=1

N pn�Fn(q)

∣∣∣∣∣
2

. (A.1.7)

19



J. Phys.: Condens. Matter 19 (2007) 236232 N Lei

A.2. Multiple excited states, with each unit cell containing multiple molecules

For the case of Ne excited states per molecule and Nm molecules per unit cell, the non-Bragg
scattering structure factor is

FNB(q) =
Nm∑

m=1

FNB,m(q), (A.2.1)

where

FNB,m(q) =
Ne∑

n=1

Km,n∑
km,n=1

e−iq(Rnm,n (km,n )+rm )�Fm,n(q). (A.2.2)

In (A.2.2), nm,n(km,n) is the index of a unit cell which has an mth molecule in its nth excited
state, Km,n is the total number of mth molecules in nth excited state in the crystal, and rm is
the location of the mth molecule relative to its unit cell centre. Therefore the total non-Bragg
scattering differential cross section is
〈

dσNB

d�

〉
= r 2

0

Nm∑
m=1

〈|FNB,m(q)|2〉 + r 2
0

Nm∑
m=1

Nm∑
m′=1;m′ �=m

〈FNB,m(q)F∗
NB,m′ (q)〉. (A.2.3)

Since whether an mth molecule is excited is independent of whether an m ′th molecule
is excited if m �= m ′, at off-Bragg peak positions, the ensemble average of exp[−iq
(Rnm,n(km,n) − Rnm′,n′ (km′ ,n′ ))] is zero when m �= m ′. Therefore

〈FNB,m(q)F∗
NB,m′(q)〉m �=m′ = 0, (A.2.4)

which gives

〈INB(q)〉 = r 2
0

Nm∑
m=1

〈|FNB,m(q)|2〉. (A.2.5)

Hayakawa and Cohen studied the diffuse scattering from local atomic disorder for a crystal
with multiple sublattices [22]. The sublattice in their study corresponds to a lattice formed by
the molecules in a particular position in the unit cells in this paper. Assuming the atoms are
always at their equilibrium positions and a complete random distribution for different kinds of
atoms among the sublattices, we show that their result agrees with (A.2.5). Note that, in their
formula, probabilities over a single sample were used, and for a particular sample the use of
the probabilities breaks down when the number of unit cells multiplying the probabilities are
small. In this extreme case, the concept of an ensemble has to be used. If there is only one
excited state per molecule, (A.2.5) was also reached by Szoke [13].

Appendix B. Derivation of the non-Bragg scattering intensity fluctuations

B.1. One excited state, with one molecule per unit cell: without spectrometer resolution
considerations

Using the definition (2.1.8) for the non-Bragg scattering lattice factor LNB(q), we have

〈L2
NB(q)〉suben =

〈( K∑
k1=1

e−iqRn(k1 )

K∑
k′

1=1

e
iqRn(k′

1 )

)( K∑
k2=1

e−iqRn(k2 )

K∑
k′

2=1

e
iqRn(k′

2 )

)〉
suben

. (B.1.1)

In (B.1.1), the subscript suben indicates a subensemble in which every system has K molecules
excited. Since each particular system in the subensemble has an occurrence probability of
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1/C K
N , the right-hand side of (B.1.1) can be written as〈
K∑

k1=1;k′
1=1

k2=1;k′
2=1

e
−iq(Rn(k1 )−Rn(k′

1 )+Rn(k2 )−Rn(k′
2 ))

〉

suben

= 1

C K
N

∑
SK

K∑
k1=1;k′

1=1
k2=1;k′

2=1

e
−iq(Rn(k1 ;SK )−Rn(k′

1 ;SK )+Rn(k2 ;SK )−Rn(k′
2 ;SK )), (B.1.2)

where SK indicates a particular system in the subensemble.
We exchange the order of summations in SK and (k1, k ′

1, k2, k ′
2) on the right-hand side

of (B.1.2) and note that
K∑

k1=1,k′
1=1,k2=1,k′

2=1

∑
SK

(k1,k′
1,k2,k′

2)∈SK

e
−iq(Rn(k1 ;SK )−Rn(k′

1 ;SK )+Rn(k2 ;SK )−Rn(k′
2 ;SK ))

=
N∑

n1=1;n′
1=1;n2=1;n′

2=1

e
−iq(Rn1

−Rn′
1
+Rn2 −Rn′

2
)

∑
SK

(n1;n′
1;n2;n′

2)∈SK

. (B.1.3)

Therefore the key to computing the fluctuation is to compute the summation of the number of
systems under the constraint that the excited molecules in the unit cells of indices n1, n′

1, n2,
and n′

2 belong to the same system.
Computing the system summation

∑
SK

in (B.1.3) is straightforward. For example,

∑
SK

(n1=n′
1=n2=n′

2)∈SK

= C K−1
N−1 = (N − 1)(N − 2) · · · (N − K + 1)

(K − 1)! , (B.1.4)

and ∑
SK

(n1;n′
1 �=n1;n2 �=n1,n2 �=n′

1;n′
2 �=n1,n′

2 �=n′
1,n

′
2 �=n2)∈SK

= C K−4
N−4 . (B.1.5)

Carrying out the computation on the right-hand side of (B.1.3), we have, at off-Bragg peak
positions,

K∑
k1=1,k′

1=1,k2=1,k′
2=1

∑
SK

(k1,k′
1, k2,k′

2)∈SK

e−iq(Rn(k1 ;SK )−Rn(k′
1 ;SK )+Rn(k2 ;SK )−Rn(k′

2 ;SK ))

= 2K 2

(
1 − K

N

)2

C K
N . (B.1.6)

Therefore

〈L2
NB(q)〉suben = 2K 2

(
1 − K

N

)2

. (B.1.7)

B.2. More than one excited state, with one molecule per unit cell: without spectrometer
resolution considerations

To obtain 〈|FNB|4〉, the key is to obtain 〈|FNB|4〉suben, where suben indicates a subensemble
in which the crystals have K1, . . . , KNe number of molecules in excited states 1, . . . , Ne,
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respectively. We know

〈|FNB|4〉
suben

=
〈

Ne∑
n1=1

�Fn1,

Kn1∑
k1=1

e−iqRn(k1 ;n1;E)

Ne∑
n′

1=1

�F∗
n′

1

Kn′
1∑

k′
1=1

e
iqRn(k′

1 ;n′
1;E)

×
Ne∑

n2=1

�F∗
n2

Kn2∑
k2=1

e−iqRn(k2 ;n2;E)

Ne∑
n′

2=1

�F∗
n′

2

Kn′
2∑

k′
2=1

eiqRn(k′
2 ;n′

2;E)

〉

suben

. (B.2.1)

In (B.2.1), Kn1 is the number of molecules in the n1th excited state and n(k1; n1; E) is the
unit cell index which has the molecule in its n1th excited state. �Fn1,

is the Fourier transform
of the electron density difference between a molecule in the n1th excited state and the ground
state. Denoting the total summation in (B.2.1) as SE(n1, n′

1; n2, n′
2), SE(n1, n′

1; n2, n′
2) can be

separated into 15 terms as

SE(n1, n′
1; n2, n′

2) = SE(n1, n′
1 = n1; n2 = n1, n′

2 = n1)

+ SE(n1, n′
1 = n1; n2 = n1, n′

2 �= n1) + SE(n1, n′
1 = n1; n2 �= n1, n′

2 = n1)

+ SE(n1, n′
1 = n1; n2 �= n1, n′

2 = n2)

+ SE(n1, n′
1 = n1; n2 �= n1, n′

2 �= n1, n′
2 �= n2)

...

+ SE(n1, n′
1 �= n1; n2 �= n1, n2 �= n′

1, n′
2 �= n1, n′

2 �= n′
1, n′

2 �= n2). (B.2.2)

Each term in (B.2.2) is computed. For example,

SE(n1, n′
1 = n1; n2 �= n1, n′

2 �= n1, n′
2 �= n2) =

Ne∑
n1=1

Ne∑
n2=1,n2 �=n1

Ne∑
n′

2=1,n′
2 �=n1

n′
2 �=n2

|�Fn1 |2�Fn2�F∗
n′

2

×
〈 Kn1∑

k1=1

e−iqRn(k1 ;n1; E)

Kn1∑
k′

1=1

eiqRn(k′
1 ;n1;E)

Kn2∑
k2=1

e−iqRn(k2 ;n2;E)

Kn′
2∑

k′
2=1

eiqRn(k′
2 ;n′

2;E)

〉

suben

.

(B.2.3)

As we did in appendix B.1, the subensemble average in the brackets in (B.2.3) is what is denoted
as an ensemble series summation defined by

ENSS(l1, l ′1; l2, l ′2; (l1, l ′1) ∈ n1, l2 ∈ n2, l ′2 ∈ n′
2; n2 �= n1, n′

2 �= n1, n′
2 �= n2)

=
N∑

l1=1

N∑
l′1=1

N∑
l2=1
l2 �=l1
l2 �=l′1

N∑
l′2=1
l′2 �=l1
l′2 �=l′1
l′2 �=l2

e−iq[R(l1)−R(l′1)+R(l2)−R(l′2)]
∑

S{Kn;n=1,···,Ne}
(l1,l′1)∈n1

l2∈n2;l′2∈n′
2

n2 �=n1;n′
2 �=n1,n′

2 �=n2

, (B.2.4)

divided by Nsys = N !/�
Ne
n=1 Kn !, which is the total number of systems in the subensemble.

In (B.2.4), S{Kn; n = 1, . . . , Ne} means a system which has exactly Kn molecules in the nth
excited state with n = 1, . . . , Ne. (l1, l ′1) ∈ n1 means that the molecules in the unit cells of
indices l1 and l ′1 are in the n1th excited state. If the molecules in the unit cells of indices l1

and l ′1 are at the same excited state n1, l1 and l ′1 can be equal or unequal (if l1 and l ′1 belong
to different excited states, then l1 and l ′1 cannot be equal since a molecule can only be at one
excited state at a particular time). Therefore the ensemble series summation in (B.2.4) can be

22



J. Phys.: Condens. Matter 19 (2007) 236232 N Lei

Table B.1. Values of the non-Bragg parts of the series summations which are defined through an
example in (B.2.10). N is the total number of molecules in the crystal.

Conditions SS(l1, 1; l′1,−1; l2, 1; l′2,−1)

l′1 = l1; l2 = l1; l′2 = l1 N
l′1 = l1; l2 = l1; l′2 �= l1 −N
l′1 = l1; l2 �= l1; l′2 = l1 −N
l′1 = l1; l2 �= l1; l′2 = l2 N(N − 1)

l′1 = l1; l2 �= l1; l′2 �= l1, l′2 �= l2 −N(N − 2)

l′1 �= l1; l2 = l1; l′2 = l1 −N
l′1 �= l1; l2 = l1; l′2 = l′1 −N
l′1 �= l1; l2 = l1; l′2 �= l1, l′2 �= l′1 2N
l′1 �= l1; l2 = l′1; l′2 = l1 N(N − 1)

l′1 �= l1; l2 = l′1; l′2 = l′1 −N
l′1 �= l1; l2 = l′1; l′2 �= l1, l′2 �= l′1 −N(N − 2)

l′1 �= l1; l2 �= l1, l2 �= l′1; l′2 = l1 −N(N − 2)

l′1 �= l1; l2 �= l1, l2 �= l′1; l′2 = l′1 2N
l′1 �= l1; l2 �= l1, l2 �= l′1; l′2 = l2 −N(N − 2)

l′1 �= l1; l2 �= l1, l2 �= l′1; l′2 �= l1, l′2 �= l′1, l′2 �= l2 2N(N − 3)

split into two ensemble series summations corresponding to the cases of l1 = l ′1 and l1 �= l ′1:

ENSS(l1, l ′1; l2, l ′2; (l1, l ′1) ∈ n1, l2 ∈ n2, l ′2 ∈ n′
2; n2 �= n1, n′

2 �= n1, n′
2 �= n2)

= ENSS(l1, l ′1 = l1; l2, l ′2; C) + ENSS(l1, l ′1 �= l1; l2, l ′2; C). (B.2.5)

For simplicity, we denoted C on the right-hand side of (B.2.5) as the condition specified on the
left-hand side. It is easy to see that

ENSS(l1, l ′1 = l1; l2, l ′2; C) = (N − 3)!
(K (n1) − 1)!(K (n2) − 1)!(K (n′

2) − 1)!
× SS(l1, 1; l ′1 = l1,−1; l2 �= l1, 1; l ′2 �= l1, l ′2 �= l2,−1), (B.2.6)

where the series summation SS(· · ·) is defined as

SS(l1, 1; l ′1 = l1,−1; l2 �= l1, 1; l ′2 �= l1, l ′2 �= l2,−1)

=
N∑

l1=1

N∑
l′1=l1

N∑
l2=1
l2 �=l1

N∑
l′2=1
l′2 �=l1
l′2 �=l2

eiq[R(l1)−R(l′1)+R(l2)−R(l′2)]. (B.2.7)

On the left-hand side of (B.2.7), in the brackets, positive one means exp(iqR) and negative one
means exp(−iqR). Similarly

ENSS(l1, l ′1 �= l1; l2, l ′2; C) = (N − 4)!
(Kn1 − 2)!(Kn2 − 1)!(Kn′

2
− 1)!

× SS(l1, 1; l ′1 �= l1,−1; l2 �= l1, l2 �= l ′1, 1; l ′2 �= l1, l ′2 �= l ′1, l ′2 �= l2,−1).

(B.2.8)

It is straightforward to compute the non-Bragg part of the series summations. We list the results
in table B.1.
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After computing each term in (B.2.2), we obtain that

〈|FNB|4〉suben = 2
Ne∑

n=1

K 2
n

(
1 − Kn

N

)2

(�Mn)
2

+
Ne∑

n=1

Ne∑
n′=1,n′ �=n

[(N2 − N ) − N(Kn + Kn′) + 2Kn Kn′ ]Kn Kn′�Mn�Mn′

(N − 1)(N − 2)

+ 2

(N − 1)(N − 2)

Ne∑
n1=1

Ne∑
n2=1
n2 �=n1

�Mn1 Kn1 Kn2

⎡
⎢⎢⎢⎢⎢⎣

(2K 2
n1

− 2N Kn1 + N )

× (�Fn1�F∗
n2

+ �F∗
n1

�Fn2) +
Ne∑

n′
2=1

n′
2 �=n1

n′
2 �=n′

1

Kn′
2
(2Kn1 − N)�Fn2�F∗

n′
2

⎤
⎥⎥⎥⎥⎥⎦

+ �E(n1; n′
1 �= n1; n2 = n1; n′

2 = n′
1)

Kn1 Kn′
1
(2Kn1 Kn′

1
− N )

(N − 1)(N − 2)
�F2

n1
(�F∗

n′
1
)2

+ �E(n1; n′
1 �= n1; n2 = n1; n′

2 �= n1, n′
2 �= n′

1)
2K 2

n1
Kn′

1
Kn′

2

(N − 1)(N − 2)

× �F2
n1

�F∗
n′

1
�F∗

n′
2
+ �E(n1; n′

1 �= n1; n2 = n′
1; n′

2 = n1)

× Kn1 Kn′
1
(N2 − N − N Kn1 − N Kn′

1
+ 2Kn1 Kn′

1
)

(N − 1)(N − 2)
�Mn1 �Mn′

1

+ �E(n1; n′
1 �= n1; n2 = n′

1; n′
2 �= n1; n′

2 �= n′
1)

× Kn1 Kn′
1
Kn′

2
(2Kn′

1
− N)

(N − 1)(N − 2)
�Fn1�Mn′

1
�F∗

n′
2

+ �E(n1; n′
1 �= n1; n2 �= n1, n2 �= n′

1; n′
2 = n1)

× Kn1 Kn′
1
Kn2(2Kn1 − N)

(N − 1)(N − 2)
�Mn1 �F∗

n′
1
�Fn2

+ �E(n1; n′
1 �= n1; n2 �= n1, n2 �= n′

1; n′
2 = n′

1)

×
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1
Kn2

(N − 1)(N − 2)
�Fn1(�F∗

n′
1
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× 2Kn1 Kn′
1
Kn2 Kn′

2
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�Fn1�F∗

n′
1
�Fn2�F∗

n′
2
. (B.2.9)

In (B.2.9), �Mn1 = |�Fn1 |2, and �E(· · ·) denotes the summation over the indices of excited
states. For example,

�E(n1; n′
1 �= n1; n2 = n1; n′

2 = n′
1)

2 =
Ne∑

n1=1

Ne∑
n′

1=1
n′

1 �=n1

Ne∑
n2=1
n2=n1

Ne∑
n′

2=1
n′

2=n′
1

. (B.2.10)
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Table B.2. Values of moments of {Kn} which follow multinomial distributions. {Kn} have the
corresponding probabilities of {pn}.
Moments Conditions Results

〈Kn1 Kn′
1
Kn2 Kn′

2
〉 No n1, n′

1, n2, n′
2

are the same
N2(N − 2)(N − 3)pn1 pn′

1
pn2 pn′

2

〈K 2
n1

K 2
n2

〉 n1 �= n2 N pn1 pn2 [pn1 pn2 (N − 1)(N − 2)(N − 3)

+(pn1 + pn2 )(N − 1)(N − 2)+
N − 1]

〈K 2
n1

Kn2 Kn′
2
〉 n1 �= n2, n1 �= n′

2
n2 �= n′

2

N(N − 1)(N − 2)pn1 pn2 pn′
2
[1 + pn1 (N − 3)]

〈K 3
n1

Kn2 〉 n1 �= n2 N(N − 1)(N − 2)p2
n1

pn2 (N pn1 + 3 − 3 pn1 )

〈K 2
n1

Kn2 〉 n1 �= n2 N(N − 1)pn1 pn2 (N pn1 + 1 − 2 pn1 )

〈Kn1 Kn2 Kn′
2
〉 No n1, n2, n′

2
are the same

N(N − 1)(N − 2)pn1 pn2 pn′
2

〈Kn1 Kn2 〉 n1 �= n2 N(N − 1)pn1 pn2

〈K 2
n 〉 N pn(N pn + 1 − pn)

We use the results of multinomial distributions for {Kn} listed in table B.2 and finally obtain

〈|FNB|4〉 = 2(〈|FNB|2〉)2. (B.2.11)

In table B.2, pn1 is the probability of a molecule being in its n1th excited state.

B.3. More than one excited state, coupled with more than one molecule per unit cell: without
spectrometer resolution considerations

The ensemble average of the fourth power of the magnitude of the non-Bragg x-ray scattering
structure factor for the crystal is

〈|FNB|4〉 =
Ne∑

n1;n′
1

n2;n′
2

Nm∑
m1;m′

1
m2;m′

2

〈FNB,n1,m1 F∗
NB,n′

1,m
′
1
FNB,n2,m2 F∗

NB,n′
2,m

′
2
〉, (B.3.1)

where

FNB,n,m = �Fn,m

Kn,m∑
kn,m=1

e−iq[R(kn,m ;n,m)+rm ]. (B.3.2)

It is easy to see that only under one of the following conditions is the ensemble average on
the right-hand side of (B.3.1) not zero: (i) m1 = m ′

1 = m2 = m ′
2; (ii) m1 = m ′

1, m2 = m ′
2,

m1 �= m2; (iii) m1 �= m ′
1, m2 = m ′

1, m ′
2 = m1. Therefore (B.3.1) is just

〈|FNB|4〉 =
Nm∑

m=1

〈|FNB,m |4〉 + 2
Nm∑

m1=1

Nm∑
m2=1

m2 �=m1

〈|FNB,m1 |2|FNB,m2 |2〉. (B.3.3)

In (B.3.3) FNB,m is defined as the summation of FNB,n,m over all the excited states. Since
whether the m1th molecule is excited is independent of whether the m2 th molecule is excited
if m1 �= m2,

〈|FNB,m1 |2|FNB,m2 |2〉m1 �=m2 = 〈|FNB,m1 |2〉〈|FNB,m2 |2〉. (B.3.4)

Using the result for 〈|FNB,m|4〉 developed in the section B.2, we have

〈|FNB|4〉 = 2
Nm∑

m=1

(〈|FNB,m|2〉)2 + 2
Nm∑

m1=1

Nm∑
m2=1

m2 �=m1

〈|FNB,m1 |2〉〈|FNB,m2 |2〉, (B.3.5)
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namely

〈|FNB|4〉 = 2

(
Nm∑

m=1

〈|FNB,m |2〉
)2

. (B.3.6)

B.4. 〈(LNB,Re(q))2〉 computation: with spectrometer resolution considerations

To compute the lattice factor squared 〈(LNB,Re(q))2〉 with spectrometer resolution
considerations, for mathematical simplicity, we assume a Gaussian-type spectrometer
resolution function

R(q) = � exp

(
− q2

x

σ 2
x

− q2
y

σ 2
y

− q2
z

σ 2
z

)
, (B.4.1)

where � is a normalization factor. For the simple case of one molecule per unit cell and one
excited state per molecule, with the resolution function defined by (B.4.1), for the subensemble
of K molecules excited, we have

〈(LNB,Re(q))
2〉suben =

〈( K∑
k1=1,k′

1=1

e
−iq(Rn(k1 )−Rn(k′

1 )) ⊗ R(q)

)

×
( K∑

k2=1,k′
2=1

e
−iq(Rn(k2 )−Rn(k′

2 )) ⊗ R(q)

)〉

suben

, (B.4.2)

where ⊗ denotes a convolution. Carrying out the convolutions in (B.4.2), we have

〈(LNB,Re(q))2〉suben

=
〈( K∑

k1=1,k′
1=1

e
−iq(Rn(k1 )−Rn(k′

1 ))− 1
4

[
σ 2

x (Rn(k1 )−Rn(k′
1 ))

2
x +σ 2

y (Rn(k1 )−Rn(k′
1 ))

2
y+σ 2

z (Rn(k1 )−Rn(k′
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2
z
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×
( K∑

k2=1,k′
2=1

e
−iq(Rn(k2 )−Rn(k′

2 ))− 1
4

[
σ 2

x (Rn(k2 )−Rn(k′
2 ))

2
x +σ 2

y (Rn(k2 )−Rn(k′
2 ))

2
y+σ 2

z (Rn(k2 )−Rn(k′
2 ))

2
z

])〉

suben

.

(B.4.3)

The average in the subensemble is just

〈(LNB,Re(q))2〉suben

= 1

C K
N

⎛
⎝ N∑

n1=1,n′
1=1

e
iq(Rn1 −Rn′

1
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1
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1
)2
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1
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z
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⎠

×
⎛
⎝ N∑

n2=1,n′
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e
iq(Rn2 −Rn′

2
)− 1

4

[
σ 2

x (Rn2 −Rn′
2
)2

x +σ 2
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2
)2

y+σ 2
z (Rn2 −Rn′

2
)2

z

]⎞
⎠

×
∑
SK

(n1;n′
1;n2;n′

2)∈SK

. (B.4.4)

To continue, we need the following results. The first is
N∑

n=1

e
−iqRn− 1

4

[
σ 2

x (Rn−Rn′ )2
x +σ 2

y (Rn−Rn′ )2
y+σ 2

z (Rn−Rn′ )2
z

]
= exp

(
−iqRn′ − q2

x

σ 2
x

− q2
y

σ 2
y

− q2
z

σ 2
z

)

× πd/2

σxσyσz Vcell
, (B.4.5)
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where Rn′ is away from the boundary of the sample, and the second is

N∑
n=1

N∑
n′=1

e− 1
2 [σ 2

x (Rn−Rn′ )2
x +σ 2

y (Rn−Rn′ )2
y+σ 2

z (Rn−Rn′ )2
z ] = 2d/2 N

πd/2

σxσyσz Vcell
. (B.4.6)

Using (B.4.5) and (B.4.6), we reach

〈(LNB,Re(q))2〉suben =
(

1 + (2π)d/2

Nσx σyσz Vcell

)(
K − K 2

N

)2

, (B.4.7)

namely,

〈(LNB,Re(q))2〉suben =
(

1 + (2π)d/2

Nσx σyσz Vcell

)
(〈LNB(q)〉suben)

2. (B.4.8)

Appendix C. Sharpening a Patterson peak

Since the Patterson function of an atom has a peak width about twice the size of that atom and
the number of peaks in a Patterson function for a molecule is N(N − 1)/2, where N is the
total number of atoms in the molecule (two peaks may have the same location), it is necessary
to sharpen the Patterson peaks to reduce peak overlaps. The traditional way of sharpening
a Patterson function leads to point-like peaks and is reported to have spurious peaks and is
sensitive to truncation errors [23]. Here we shall introduce a simple technique to sharpen
Patterson function peaks with a controlled sharpness level.

The sharpened electron density for a molecule can be expressed as

ρs(r) = β3
s

K∑
k=1

Nk∑
jk=1

ρk[βs(r − Rn( jk))], (C.1)

where ρk(r) is the electron density for an atom of type k. Nk is the number of type-k atoms in
the molecule, and Rn( jk) is the position of the jk th type-k atom. In (C.1) βs is a positive number.
When βs is larger than one, (C.1) produces a sharpened electron density profile. Therefore,
the Patterson function generated by ρs(r) has peak widths inversely proportional toβs. The
Patterson function for the sharpened electron density is

Ps(u) =
∫

∞
ρs(r)ρs(r + u)dr, (C.2)

namely,

Ps(u) = 1

(2π)3

∫
∞

ρ̃s(q)ρ̃s(−q)e−iqudq, (C.3)

where ρ̃s(q) is the Fourier transform of ρs(r), namely

ρ̃s(q) =
K∑

k=1

Nk∑
jk=1

ρ̃k

(
q
βs

)
e−iqRn( jk ) . (C.4)

Since, for different atoms, ρ̃k(q) is roughly proportional to the atomic number when |q| is not
larger than 10 Å

−1
, for light atoms of carbon, oxygen, and nitrogen [24], (C.4) can be written

as

ρ̃s(q) = ρ̃1(q/βs)

K∑
k=1

Nk∑
jk=1

Zk/Z1e−iqRn( jk ) , (C.5)
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where Zk is the atomic number for the type-k atom. Therefore,

ρ̃s(q)ρ̃s(−q) = ρ̃1(q/βs)ρ̃1(−q/βs)

∣∣∣∣∣
K∑

k=1

Nk∑
jk=1

Zk/Z1e−iqRn( jk )

∣∣∣∣∣
2

. (C.6)

In (C.6), the term |∑K
k=1

∑Nk
jk=1 Zk/Z1e−iqRn( jk ) |2 can be obtained through the x-ray scattering

differential cross section of the molecule through∣∣∣∣∣
K∑

k=1

Nk∑
jk=1

Zk/Z1e−iqRn( jk )

∣∣∣∣∣
2

=
dσ (q)

d�


|ρ̃1(q)|2 . (C.7)

Therefore the sharpened Patterson function can be computed by

Ps(u) = 1

(2π)3r 2
0

∫
∞

|ρ̃1(q/βs)|2 × dσ (q)

d�

|ρ̃1(q)|2 e−iqu dq. (C.8)
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